If it's not what You are looking for type in the equation solver your own equation and let us solve it.
756x^2-897x=0
a = 756; b = -897; c = 0;
Δ = b2-4ac
Δ = -8972-4·756·0
Δ = 804609
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{804609}=897$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-897)-897}{2*756}=\frac{0}{1512} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-897)+897}{2*756}=\frac{1794}{1512} =1+47/252 $
| -7=7u+8 | | 70+65+x+53=189 | | 32=7v+8-5v | | b=15.2 | | --20x=-7x+11-2x | | 219+3m=240 | | t/3-3=t/9+2 | | (9+x)/(6)=4 | | -4(r+2)=5(3-6r)+3 | | p2+ 3=5 | | 12x+10=54-1x | | 7.5z–2=8.5 | | -2(v+1)+3(5-v)=-82 | | 7/9=3x/4x+1 | | 2^(n+4)*5^n+5=0 | | u-38+49+39=180 | | 18+y=11 | | 4/6-2x=-2/x-3 | | q=25.5 | | (-30)(-5x)=120 | | c+37+c+11+2c=180 | | 12x+5=6-3x | | 2=2c+–2 | | y+5.9=7.79 | | x+34+40x+32x=180 | | (14x-13)(4x+13)(6x+2)=180 | | 20.8=-4c | | 8x-3=6x/5 | | 4(x-7)=0.3(x+2) | | -15x-25=-25+5x | | -8g–9=-49 | | 8.7(125)=y |